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In modern engineering there arise new and increasingly more complex 

problems concerning the stability of motion. Looking at the past and 
anticipating the future, one can see that in order to keep up with 
technological progress it will be necessary to develop more and more 

precise methods for the investigation of these stability problems. The 

main difficulties in this direction are caused by the insufficient de- 

velopment of computation algorithms and of the procedures proposed al- 

ready by Liapunov in his work -General problem of the stability of 
mot ion”. 

1. Some problems on the stability of motion. 'Ihe possibility 

of the application of Liapunov’s [ll method to the solution of important 

engineering problems of stability of motion 
lectures on aircraft stability which I gave 

early forties. 

Liapunov’s general theorems on stability 

ously, to the equations of perturbed motion 

dx, - = x, (t, Xl, . . . , x,) 
dt 

was pointed out by me in my 

at Kazan’ University in the 

(Section 16) apply, obvi- 

(s = 1, . . ,n) 

in which the bounded, continuous, real functions X8 vanish when x1 = 0, 
. ..) x,, = 0, and satisfy the conditions for the existence of a single- 
valued solution in the region 

t>t,, Xl2 $- . . . +xn’<H 
for arbitrary disturbances in this region.** 

l The work was published in a small number of copies in 1949. 

l * The notation is the same as that used in my textbook 12 1. 
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Liapunov accepted the following definition of stability. 

If for an arbitrarily small, given positive number A there can be 

N.G. Chetoev 

selected a positive number h such that for all disturbances xlO, . . . . 
x no’ satisfying the condition 

x102 + - . . + Gaoa < ‘h 

andif for all t, t> to, the following inequality is valid 

xi2 + . . . + czn2 < A 

then the undisturbed motion (xl = 0, . . . , x, = 0) is stable; in the 
opposite case, it is unstable. 

In the proof of the theorem on stability (Section 16) which was given 
in the spirit of the epsilon proofs, Liapunov proposed a useful, practi- 
cal method of finding (for a given nun&er A, less than H ) with the aid 
of the functions V and A, a positive nuxkr X possessing the property 
specified in the definition of stability. Ihis is a very important point. 

In most engineering problems one is interested in satisfying the in- 
equalities, appearing in the definition of stability, for given X and A 
over a bounded time interval from the initial moment to to some instant 
T. When the values of A, A, to and T are, however, given, then there 
arises the problem of the definition of the (A , A, to, T ) -stability in 
the large during a hounded interval of time. 

Transforming, if necessary, the right hand sides of the differential 
equations of the disturbed motion in the problem of the (A , A, to, T 1 - 
stability in the appropriate way in the regions* 

x12 + . . . + x,2 < q A<~,*+...+x,,~<H 

for every t > tot while in the region 

h\<x,‘+. . . -Lz,2<A 

for t > T, re can reduce the problem of the (A , A, to, T ) -stability to 
a more general stability problem of Liapunov with a certain additional 
restriction. This restriction is that the Liapunov functions of the 

l The possibility of transforming the given equations in the region 

Xl *+ . . . + X" * < X bx such a treatment of the given stability problem 
of ~iapunov, is explained by the nossibilitx of selecting (in the 
latter problem) the initial instant of time as a&v Point in the in- 
terval (to, T). 
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transformed equations possess the properties specified by Liapunov for t 
greater than the given to, and that the number X, obtained from A by 
Liapunov’ s method, be greater or equal to the given value for A. 

‘Ihis circumstance makes the direct method of Liapunov quite valuable 
in the application to those applied problems of stability in the large 
during a bounded interval of time, for which there exists a general 
problem of Liapunov. 

In Liapunov’s definition of stability it is textually assumed that 
there are no disturbing forces in the sense, that the disturbed motion 
takes place under the action of those forces which were talcen into con- 
sideration in the determination of the undisturbed motion. Liapunov gave, 
already in the problem of stability in the first approximation, the first 
exmnples of problems with disturbing forces. Obviously, not every problem 
of the (A , A, t ,,, T) -stability with disturbing forces can be covered 
by one of Liapunov’s problems (for exsmple, such a direct covering does 
not exist when X = 0). ‘lbe covering of the problem of the (A , A, to” T I,- 
stability with a Liapunov problem can be accomplished by various methods. 

After these introductory remarks, I shall occupy myself in what 
follows with the problem of the stability of motion in the sense of 
Liapunov. 

2. ‘heorem of instability for regular systems C3 1. Every- 
body knows Liapunov’s theorem: if the system of differential equations 
of the first approximation is regular and if all its characteristic 
numbers are positive, then the undisturbed motion is stable. 

One can prove a theorem of instability that is a converse in a certain 
sense: if the system of the differential equations of the first approxi- 
mation is regular, and if smong its characteristic numbers there exists 
at least one negative number, then the undisturbed motion is not stable. 

Let US consider the system of differential equations of the first 
approximation 

dx 
(s = i, . L . , n) 

where the p,, represent certain real continuous, bounded functions of t 
defined for all positive values of t. If this system is regular, then 
according to the definition of regular systems I 1, Sect. 9 1 the sum 
A, + l .* + A, of the characteristic numbers X, of the normal system of 
its independent solutions 

x1r, - - * * &v (r = I, , . . , n) 

is equal to the negative of the characteristic number of the function 
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exp- 
12 

P.&t 

‘lhis is possible if the sun of the characteristic nwnbers of the func- 
tions 

is zero. 

A system of n independent solutions is normal if the sum of the 
characteristic nunbers of all remaining independent solutions attains 
its supremwa [l, Sect. 8, 'Iheorem Iv I. 

We denote by A the determinant constructed of the functions xii, and 
by A. - the cofactor (minor) of its element Xii. It is well known that 
the kctions 

A sr 
yrr = T (s=i,...,n) 

satisfy, with r fixed, the system of linear differential equations asso- 
ciated with the problem of the system (1). 

Let us denote by p, the characteristic number of the group of func- 

tions ylrJ . . . . y,, of fowula (2), which were determined by a normal 
system of independent solutions x.. of the regular system (1). On the 
basis of general results of Liapu& on characteristic nwnbers Il, Sect. 

61 , we have the inequality p, > - X,. From the obvious relation 

we deduce the inequality p, + A,,< 0. 'lhese inequalities lead to the re- 
lation 

*+&=O (r=I....,n) (3) 

'lhe system of differential equations that has bean associated with 
(1) will, therefore, be regular also, and the system of functions ydr, 
given by (2), will represent its normalized system of independent solu- 
tions. 

let us now consider the complete system of differential equations of 

the disturbed nmtion 

dx 
L = P&l + * * * + p&n + xl dt (s=i....,n) 

where, for all positive t, the X, are holomophic functions of the guan- 
tities x1, . . . . xs, at least for all those values of the latter which 
satisfy the condition 
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Xl2 + . . . +xn2<A 

where A is a constant distinct from zero and the coefficients in X, are 
assumed to be determined by definite, continuous, bounded functions of 
t; the expansion of XI begins with terms of at least the second order. 
Let us introduce the variables zl, . . . . ‘n in accordance with the form- 

ulas 

From this it follows that the characteristic number of the group of 
functions zl, . . . . Z, is smaller than the characteristic number of the 
group of functions XI, . . . . xn, i.e. 

We have 

char. numb. { #,I > char. numb. { s,,) (4) 

dz,_ 
dt 

- - (h, - E) 2,. + 2 i&4?--%-L)t 

Let us now assume that among the characteristic numbers X1, ..*, A,, 
there is at least one negative one. Lst it be X,. 

'lhe instability of the undisturbed motion (relative to the variables 

"1, ..*, x,,) will be proved by the method of contradiction. 

If the undisturbed motion is stable, then for an arbitrary given small 
positive number A there will exist such a positive number R that for 
arbitrary initial disturbances x1*, . . . . znO satisfying the inequality 

qu2 +a *. + GK12 < R 

the following inequality will hold for all positive t: 

(61 

xl2 + . . . + x,,~ < A (7) 

lhder this assunption it follows from the equation with r = 1 of 
system (51, that 

z1 = ce-Ali + e-hit 2 X,ysldt s (c is some constant) 
8 

Since the functions XI are assmd to be bounded for all positive 
values of t and for all x1, . . . . x, satisfying the condition (l), and 
since they are assumed to possess expansions beginning with the second 
degree terms in powers of the variables x1, *.*, xn, it follm that in 
the selection of the initial values xle, . . . . xnO, in accordance with the 
inequality (61, and for small enough R, we find that the characteristic 
nmaber of the last term on the right hand side of the last equation is 
not negative and, hence, that the characteristic number of the fmction 
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z1 is equal to A, [ 1, Sect. 6, lema IV 1 . This and the relation (4) 
prove 
equal 

that the characteristic number of the group x1, . . . . x,,, which 
to the smallest of the characteristic numbers of the functions 

is 

21* 
. . . . z,, will be not larger than the characteristic n&r of zl, i.e. 

char. numb. i %J 5 A, < 0 

This statement contradicts the condition (7). We must, therefore, con- 
clude that whatever the value of R may be, among the initial disturbances 

x10, **a, xs(j there exist some for which the inequality (7) ceases to 
hold for some positive values of t. Ihus the theorem can be considered 
proved. 

3. oh some questions of the stability and instability for 
non-regular systems 14 1. If the system of differential equations 
of the first approximation is not regular, then, indicating the SWBI of 
all characteristic numbers of the normalized system of its solutions by 

S = h, + . . . + h, 

end by c the characteristic nunber of the function l/A, we will have 

s-j-p=--a 

where 0 is some positive umber. 

In this case the characteristic nunber of the functions 

A .w 
Yrr = - A 

will not be less than - X, - 0. For the sake of definiteness we shall 
asssme that the functions y,, satisfy the conditions 

2 y.ra (0) = 1 

Theorem of Liapunov. If the system of differential equations of the 
first approximation is not regular and if each of its characteristic 
nmbers is greater than 0, then the uudisturbed motiou is stable. 

Proof. Let us introduce the new variables 

-(?Lr -IV 
zp. = %yJ& 

where l represents soau3 positive’nuaber less than every one of the 
characteristic nunbers Xr and larger than (I. If the tallest of the 
characteristic nmbers is denoted by X 1, then A, > t > o. 

The formulas for the inverse trausfonnation will be 
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'lhe coefficients standing on the right hand sides of the linear foxms 
in the variables z will be vanishing functions of time with character- 
istic nunbers not I ess than c. From the last formulas it follows that 

char.namb.! xa 1 ) char.namb.( zs f + E 

Here the symbol Ix,] stands for the system of functions x,&z = 1, 
. . . . n). 

Let us consider the positive definite quadratic form 

2V=212f...$-&~ 

lhe total derivative with respect to time is, because of the given 
system of differential equations of the disturbed system, 

The function R = R(t, zl, . . . . 
ables, 

zn!, as a function of the new vari- 
has in its series expansion, UI positive powers of the variables 

Zl’ a**, z,, coefficients which are vanishing functions of t with 
characteristic nunbers not less than the positive ntier c - u. 

For every positive nunber 7, no matter how small, one can find a 
region of sufficiently small numerical values zlr . . . . z, and a number T 
such that within this region and for all t greater than T the following 
inequality is valid 

I R (t, 21, . - - , 2,) 1 < r (Z12 + - - * + zn2) 

lhis follows from the properties of R(t, zl, . . . . zn) as a function 
with vanishing coefficients and with an expansion that begins with terms 
of at least the third degree in zS. 

If 3 is chosen in accordance with the inequality A, - c > I) with the 
indicated conditions, we shall have, for all t > T and for all zl, . . . . 

‘n in the specified region, the following relation 

Hence, if the initial values z,~ are chosen so that as t varies from 
tg to T, the values of the variables zr lie in the indicated region, 
then for all t > to we shall have 

z ZP2 \<ce-!N&-e-_r))L 
)L 

Whence, 

char. nuab.{zr) >,A,-r-q 
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and, hence 

lhis proves the 
variables x1, . ..) 
turbed motion will 

char. numb. ( ze ] > A, - ‘I > 0 

stability of the undisturbed motion relative to the 
x,, and also shows that every sufficiently close dis- 
tend asymptotically to the stable motion. 

Theorem. If the system of differential equations of the first approxi- 
mation is not regular, and if its smallest characteristic number is less 
then - o, then the undisturbed motion is unstable. 

Proof. We denote the smallest characteristic number of the equations 
of the first approximation by X,. By the hypotheses of the theorem X, + 
0 < 0. 

let us consider the variables 

char. numb. ( zrl > char. numb. 1 xs 1 

We consider the equation 

dq. 

dt= - (Al + u) z1 -t 2 Xsy81e-(h*++ 
II 

Ihe proof of the theorem will be made by contradiction. let us assuw 
that the undisturbed motion is stable under the given conditions. Then 
for every given positive nu&er A, no matter how small, there will exist 
a positive number a such that, for initial disturbances nls, . . . . zao 
satisfying the inequality 

Z102 + . . . + %ltno2 < a 

and for all t greater than ts, the following inequality will hold: 

xi’ + . . . + x,,’ < A 

Fran the differential equation for zI it follows that 

where c is some constant. 

If the undisturbed motion is stable, and A is chosen smaller than the 
radius of the region of holomorphuess of the functions X,, then the fuuc- 
tions X will be bouuded for all values of t > to, provided, of course, 
that thi initial disturb-es are chosen in accordance with the inequal- 
ity 
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The characteristic nuaber of the system of functions ye1 is not 
smaller than -4X 1 + a) > 0. ‘lhe limits in the integral *ere, therefore, 
chosen in accordance with hnown theorems of Liapunov on the character- 
istic number of an integral. If, without loss of generality, we let the 
initial moment of time be t,, = 0, w obtain the relation 

0 

z] xs0Y81(0) = c - P X, y&t 
a0 

From this and the property of the holomorphic functions X,, whose ex- 
pansion of powers of x1, . . . . x, begin with terms of degree at least two, 
and from the property of the functions yS1, which vanish with a positive 
characteristic nmnber not less than -( X 1 + a), we see that, for a 
nlnnerically small enough A and for the largest a for the given A, the 
left hand side of the last equation will be a first order quantity, while 
the integral will be a quantity of order not less than the second. Hence, 
the constant c will be distinct from zero. 

One can obtain this result more simply if in the preceding equations 
the variables Xi are expressed in terms of t, x1@, . . . . ,x10 under the 
assumption that the undisturbed motion is stable. In this case the inte- 
gral will begin with a second order term in ztO with a bounded coeffi- 
cient. Hence, for a small enough a, one can find such values of x,,, that 
c will be different from zero. 

From the formula for z1 we deduce that 

char. numb. zl=xl+u< 0 

and, hence, 

char. numb. 1z.j C hl+u< 0 

which contradicts the hypothesis on the stability of the non-disturbed 
motion. Ihis proves the theorem. 

4. (Is the sign of the smallest characteristic number. knong 
the problems concerning the stability of motion, the one dealing with 
the sign of the smallest characteristic number of a system of linear 
differential equations is of special interest. Its significance is 
illuninated by the preceding theorems. 

In the general formulation the problem of the sign of the smallest 
characteristic nunber has not been solved 15 1 in a form which would lend 
itself effectively for caaputations, even for equations with constant 
coefficients. For the latter equations the determination of the charac- 
teristic numbers does not present a problem. 

‘lhe reasons why the various methods for the determination of the 
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p,, are to be dropped or even to be forbidden in order 
to obtain an effective solution of the problem. This matter could be 
resolved with the correct general statement of the problem of the 
characteristic nwnber. 

5. On the upper and ‘lower bounds of characteristic numbers. 
'Ihe first results on the more or less precise upper and lcuer bounds of 
characteristic ntBbtrs for the linear differential equations (1) were 
establishedby Liapunovin theproofofthetheoremthateverynon- 
trivial solution of the system of differential equations (1) has a finite 
characteristic nwnber. 

Proof. Let us consider a real solution in uhich the X8 are real func- 
tions of t. We introduce the new variables 

where A 

lhen 
ones: 

2, = xsexf 

denotes saw3 real constent. 

the given equations (1) will be transformed into the following 

dz 
B = p‘$l + . . 
dt . + (pm + q 2.4 + - * * + PsnXn (s = I, . . t n) 

from which we derive 

8 sr 

'Ihe second part of this equation represents song real quadratic form 
in z, with coefficients depending on X, and t. Because of the ass-d 
boundedness of the function per one can find such values A = A', for 
which all principal diagonal minors of the discciminant 

will be positive for all values of t under consideration. For such a 
value of A'> the quadratic form will be positive-definite. 

One can also find such values A = AI for uhich the principal diagonal 
minors will alternate in siga beginning with a certain negative one 

Pll + Al* For such a X the quadratic form standing on the right hand 
side will be negative- &finite. 

Fran this it follows that for every X = A' + r/2, where c is sn arbi- 

trary positive nunber, we have the equation 
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from which we obtain by integration the inequality 

for all t under consideration. Here, c stands for some positive constant 
which does mt exceed L: zfoe4 tO, where the zIo are the initial values 
of the variables tl corresponding to the initial time t. 

IfX=A,- c /2, we have 

whence, 

, 

for all t under consideration. Here, c1 stands for a positive constant 
not less than 6 to 2 z’ 80' 

Hence, for A= X, + IF/Z, where l is au arbitrary positive number, one 
can find amoug the functions zt at least one unbounded one; while for 
X=X”- c/2, all the functions z, will be non-decreasing functions. 
Thus, the smallest characteristic nmnber of the functions xI of the real, 
non-trivial solution of the system (11 under consideration will not be 
less than A, and not greater than A’. 

Consequence [ 2 1. If the coefficients p,, of the differential equa- 
tions (11 are such that the principal diagonal minors of the determinant 

II Pm + Prr II 

alternate in sign, whereby pll is negative for all values of t greater 
than some constant ts, then the characteristic numbers of the particular 
solutions of such a system are all positive. 

lhe bound for the characteristic rnmbers determined by Liapunov can be 
isproved. Indeed, in accordance with the given equations we have 

$gh* = t:parx,xr 
II 6r 

If the right hand side of this equatiou is syrmaetrized and if the sym- 
metric quadratic form is reduced to the sum of squares by means of a 
linear orthogonal transformation, then one can obtain the known inequal- 
ities 
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d 8.P s 

where a aud /3 denote the smallest and largest roots, respectiveJy, of 
the equation 

OP 

II per + prr _ 6 

2 S?K = II 
0 

cexp (2 S ad)<~z,‘<cexp (2 S pdt) fc = &I+ . ..+ z’no) 
‘ 

where the integrals are taken with the limits t,, to t. 

On the basis of this we must conclude that the characteristic nmdn5r 
of the system of fmctions x1, . . . . xs satisfying the giveu linear equa- 
tious, is not larger than the characteristic nmxber of the expression 
exp J adt and is not less than the characteristic nuaber of the function 
exp j pdt, i.e. 

char. numb. exp l adt > char. numb. ( x,) ‘> char. numb. exp J adt 

conScqaencc. ‘Ihe smallest characteristic nmnber of the solutions of 
the given equations will be positive if the characteristic ntmber of the 
function 

exp j3dt 
s 

is positive, where B stands for the largest root of the equation 

II P‘? + Prs 
2 

- 8‘,% = 0 
II 

6. 'he ceefficiemts p,, tend towarda 

C ,r if3 IL 

lheorcr. If with the u&unded increase of t, the coefficients prr 
characteristic n&r of tend to the definite limits cSr, the aaulleat 

the equations (1) coin&&m with the blest characteristic n&r of 
the limiting systcsr 

the defiaite limits 

dx 
2 = Cd151 $ . . . + c,GI 
at 

(8 = i, . . . , n) 

Proof. E3 make the substitution 
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za = z,eqt (S = 1, . . . . , n) 

where u is some constant. ‘lhe given equations (1) will be transfornmd 
into the system 

dz 
(3 

uhile the limiting system (8) will go over into the next system, which 
is the limiting system for Equation (91, 

dz 
--! =clllz~+..~+(cII‘+q)zs -!-...$ c.snz, 

dt (10) 

‘Ihe roots of the characteristic equation of the system (101, 11 csr - 

‘~r(X-V)\( = O# we will indicate by x1, l **, xn l 

If there exist no non-negative integers II, . . . . In,, whose sum is 2, 
for which the expression 

wl + - - - + mnx, 

vanishes, then there will exist a quadratic form II with positive coeffi- 
cients satisfying the equation 

xz [cs1z1+ * * * + (cm + q) 28 + - - - + hAtI = 21” + . . . + 27x2 

‘lhe form R will be negative-definite if the real parts of all the 
roots x, are negative; th is f ow II will take on positive values for 
certain values of the variable z if there exists at least one root (among 
the roots x1, . ..) x, with a positive real part). 

In view of Equation (91, the total derivative of such a function IF 
with respect to t will have the form 

Since the function W is a quadratic form with constant coefficients, 
one can find a n&r c > 0 such that whenever 

I Par - c.w I < E 

the right hand side of the last equation will 
quadratic form in the variables 2. 

represent a positive 

‘lhe coefficients p,,, however, tend to the 
indefinitely. Hence, for every positive E , no 

limit cSr as t increases 
matter how small, there 

exists a T such that for all t > T the absolute values of the differences 

P 8r - ‘*r will be less than c , and, hence, for all t greater thsn T, the 
derivative dW/dt will be a positive-definite function. 

This leads us to conclude on the basis of the general stability 
theorems of Liapunov, that if there do not exist non-negative ndrs 
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“10 --*, ~a whose slpn is 2, for which the expression 
mlxl + . . . + mdh 

vanishes, and if the smallest characteristic n&r (taken with opposite 
sign of the largest real part of the roots x,1 of the system (10) is 
positive, them the undisturbed motion of the system (9) is asyaptotic- 
ally stable; while, if the smallest characteristic number of the system 
(10) is negative, the undisturbed motion of the system (9) is unstable. 

From this we may conclude that the smallest characteristic nunbars of 
the set of functions z 

f 

, 
the givenequations (1, 

. . . . z,, when the x1, . . . . x, are solutions of 
as well as those of the limiting system (8), can 

be equal to zero only for one definite value of the constantq. 'ibis 
proves the thearem. 

7. Ihe coefficients plr have hounded oscillations 12 1. If 
the coefficients of the linear equations (1) have the form 

Psr = Car + sf,, 
wheret is aparmaeter, the c are independentofr, and the f are 
bounded real functions oft, Lnthe given equations (1) in&& as 
particular cases the equations with the constant coefficients car: 

dx* 
-& = c,121+ . . . + h&l 

Let us assuat that the roots A, of the characteristic equation 

UcW- a*, 41 = 0 

satisfy the condition nlAl + . . . + a,&,, f 0 for arbitrary non-negative 
integers whose awa is 2. We consider the quadratic form (ara = a_) with 
constant coefficients 

2v = ~&rsxrx, 

determined by the equations 

~(c,~x~+...+e,~~)~=-x2,~-...-~~ 
I I 

lbs total derivative of Y with respect to t cau be written, in view 
of the last equation and of the given equations (11, a8 

V’=-3+2---.. .-~2+~(filxl+...ff.,h)a~ 

For small enough 1~1 and for a positive a less tha 1, tha form 
- V' - (x12 + . . . + %a 1 can be made positive for all t aad for arbitrary 
values of the variables. For such a value of t, the asymptotic stability 
or instability of the undisturbed motion (xl = 0, . . . . xs= 0) of the 
equation with tha ccmstant cafficients c,, will correspamd to the 
stability and unatability of the given syatam (1); the valua of l , for 
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which such a correspondence 

by n inequalities for all t 
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will unconditionally exist, is determined 

> to: 

(r = 1, . . . , n) 

where 

For the case of stability which is of interest to us, one can sharpen 

the estimate given in the preceding discussion. 

For this purpose we consider the extremal values of V’ on the surface 
V -et 0. We make use of Lagrange’s method. 

We have the equations for the extremum 

i3V‘ WI 
--=-_A- 
% a% 

Hence, for the extremal positions we have 

V’ = XV 

where X is a root of the equation 

\I 2h,, - h&s 11 = 0 

Let X, be the smallest, X’ the largest root of this equation; then, 
if V is positive-definite, 

Hence, 
)qV < V’ < k’V 

f t 

V, exp \ A,dt < V Q V, sxp \ h’dt 

to 1. 

From this we deduce that for a positive-definite V, the upper and 
lower bounds of the characteristic numbers of the solutions are deter- 

mined by the characteristic numbers of the expressions 

exp($‘dt), oxp($,dt) 

1, L 

(Note. Ihe last inequality yields the possibility of solving the 

problem of the (x, A, to, T)-stability. let V be a positive-definite 
quadratic form. Let us assume that c is the exact maxim of V on the 
sphere x1* + . . . +x,*=x, and that C is the exact lower bound of V on 
the sphere A. ‘Ihen 
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IVolfc 
and, hence, in order to have (h , A, to, T)-stability it is sufficient 
to satisfy the inequality 

C < c oxp A’dt s 
for all t on the interval (t,, T)). 

__ 
8. Parametric considerations 18 ].‘I& equation 

A(A) =I/ppr-&orij(= 0 

will have II roots X,, . . . , A, for each value of t. these roots will 
change with a change in t. 

If for every positive t there exist no non-negative integers ml, . ..) 
ms, whose sun is 2, for which the expression 

ml& + . . . 

vanishes, then, for such t, them will 

v = @&Xr 
tr 

with bounded coefficients depending on 
order partial differential equation 

exist a quadratic form 

(%, = ar,) 

t. ‘Ihis V will satisfy the first 

where t plays the role of a parameter. 

‘Ihe form V will be positive if the real parts of all the roots A, are 
negative; for certain values of the variables x,, the form will take on 
negative values if there exists at least one root, among the A,, l **t x “’ 
with a positive real part. ‘Ihe total derivative of V with respect to 
time can be written in the form 

dV av 
-&=-x212-...-x”z$~ 

in view of Equations (1). 

lhe discriminant of the quadratic form, standing on the right hand 
side of the last equation, is 

Suppose that for all positive values of t, the derivatives tzrS’ are 
bounded, smd that all principal diagonal minors D,, . . . , D, of the dis- 
criminant D satisfy the inequalities (-l)'D, > 0, and that their absolute 
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values are not less than some positive number. In this case the deriva- 
tive will be (in accordance with a known criterion of Sylvester) a 
negative-definite quadratic form in the variables x1, . . . . x,. UIder 
these conditions, if V is a positive-definite quadratic form, the undis- 
turbed motion will be stable; if V in addition does have sn infinitesi- 
mally small upper bound, then the stability of the undisturbed motion 
will be an asymptotic stability. If, honever, the form V admits an in- 
finitesimally small upper bound and csn take on negative values, then 
the undisturbed motion is unstable. 

lhe parsnmtric consideration can be 
when the p,r change slowly with time. 

For the case when V is a definitely 

useful for practical purposes 

positive function, the obtained 
results can be made more precise. Indeed, let us consider the problem on 
the extremal values 

V’ = Ii (a,“ - 6,s) x,x, on the surface V = c 

‘lhe equations of the extremal problem 

N’ -_ k av 
ax, ax, (s=l,*..,n) 

for the extremal values of V’ yield 

I;’ = Al’ 

where X is a root of the equation 

jars’ - 43 - hnrr 11 = 0 

If X is the smallest, and A’ the largest root of this equation, and 
if V is positive-definite re will have _ 

or 

v, exp (\ Al dt) < V < V. exp (i A’ &) 

1. 1. 

Ihis inequality makes it possible to determine the bounds for 
teristic numbers A,, . ..) x n, and it also can be directly useful 
consideration of the problem on the (A , A, tO, T) -stability. 

charac- 
in the 
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